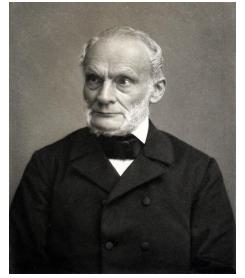


Virial theorem in astrophysics

Marina Pavlović Department of Physics Faculty of Sciences, University of Novi Sad

The Virial theorem in astrophysics

- The classical derivation of the Virial Theorem
- The Variational Form of the Virial Theorem
- Some Applications of the Virial Theorem in stellar astrophysics
- Applications of the Virial Theorem in modern physics



The classical derivation of the Virial Theorem

- Earliest clear presentation of the Virial theorem.

Nicolas Léonard Sadi Carnot

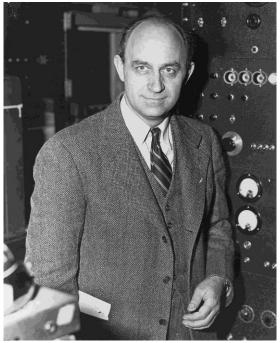
Rudolf Clausius

- Average kinetic energy is equal to 1/2 the average potential energy.
- Systems can be described by solving the force equations representing the system.
- The Virial theorem generally deals with scalar quantities.

The classical derivation of the Virial Theorem

- Claussius version for derivation of the theorem.
- Fundamental structural equations of stellar astrophysics.
- Basic conservation laws.
- For the gravitational potential, we arrive at a statement known as Lagrange's identity:

$$\frac{1}{2}\frac{d^2I}{dt^2} = 2T + \Omega$$

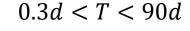

- System is in a steady state.
- Virial theorem:

$$2\overline{T} + \overline{\Omega} = 0$$

The Variational Form of the Virial Theorem

- The variational approach yields differential equations which describe parameter relationships for a system disturbed from an initial state.
- Ledoux determed the pulsational period of the star.
- Chandrasekhar and Fermi investigated the effects of a magnetic field on the pulsation of a star.

Enrico Fermi



Radial Pulsations for Self-Gravitating Systems: Stars

- Frequency of radial pulsations in a gas sphere.
- The motion is simply periodic.
- The pulsation increases radially outwards in a linear manner.
- Equation for pulsational period takes simple form:

$$T = \left(\sqrt{\frac{4\pi}{3G}}\right)\rho^{-\frac{1}{2}}$$

- This law has been found to be experimentally correct in the case of the Classical Cepheids:

Novi Sad

The Influence of Magnetic and Rotational Energy upon a Pulsating System

- Frequency of pulsation of that system.
- All deviations from equilibrium shall be small.
- Radiation pressure will be considered to be negligible.

$$\frac{1}{2}\frac{d^2I}{dt^2} = 2T_{\rm K} + \Omega + \mathcal{M}$$

- Periodic form for the pulsation and linearly increasing amplitude.
- The pulsation period will be positive only if: $|\Omega_0| > \mathcal{M}_0$
- The introduction of magnetic fields only serves to lengthen the period of pulsation.
- The addition of rotational energy will tend to reduce it.

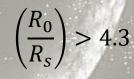
Some Applications of the Virial Theorem: Pulsational Stability of White Dwarfs

- White dwarf become unstable when its radius shrank to about 246 Schwarzschild radii or 1000km.
- Spherically symmetric equation of motion.
- Again, we form LI and its variation.
- We can write eq for stability of white dwarfs as:

 $(R_0/R_S) > 228(M_0/M)^{4/9} \cong 200$

The Influence of Rotation and Magnetic Fields on White Dwarf Gravitational Instability

- Strong gravitational field.
- The case for rigid rotation.
- Stability conditions:


$$\left(\frac{R_0}{R_s}\right)^3 + \left(\frac{R_0}{R_s}\right) \frac{4.4 \cdot 10^4 w^2}{(1 - \mathcal{H}^2)} - \frac{9.3 \cdot 10^{-6}}{(1 - \mathcal{H}^2)} > 0$$

- For the field to make any noticeable difference it will have to be truly large.
- Neither magnetic fields nor rotation can significantly alter the fact that a white dwarf will become unstable at or about 1000km.

Stability of a Neutron Star

- The electrons achieve relativistic velocities.
- Let us ignore the effects of general relativity and just consider the special relativistic Virial theorem.
- Stability conditions:

R_o for a neutron star would have to be greater than about 12km
The effects of magnetic fields and rotation are qualitatively the same for neutron stars as for white dwarfs.

Applications of the Virial Theorem in modern physics: Temperature of the interior of a star

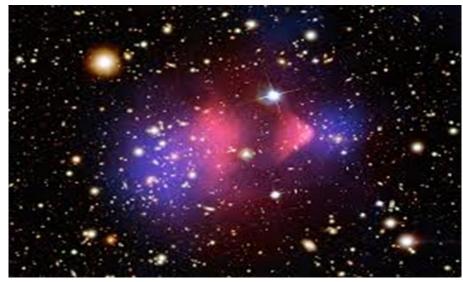
- Planck Quantum Theory of Radiation.
- Most effectively using the Virial Theorem.
- Gravitational potential energy: $V = -\frac{3GM_s^2}{5R}$
- Single atom moving in the interior of the star has a mean kinetic energy $\langle Ke \rangle$ given by energy equipartition: $\langle K_e \rangle = \frac{3}{2} k \langle T_s \rangle$,
- Virial theorem gives us:

$$\langle T_s \rangle \approx \frac{GM_s^2}{5kNR} = \frac{GM_s^2m}{5kR}$$

11/18/2017

Applications of the Virial Theorem in modern physics: The dark matter hypothesis

- A cluster of galaxies.
- The main portion of luminous and observable matter in a thin disk.
- Gravitational force = Centripetal force.
- The velocity of the star depends on the mass of the galaxy.
- Applying the Virial Theorem to each star:


$$\sigma_r^2 \approx \frac{GM_{virial}}{5R}$$

- Electro-magnetic spectrum analysis.
- F. Zwicky found that there was about 100 times more mass than the expected one given by the spectrum analysis.

Bullet Cluster

- A clash of two galaxies
- The clash caused a strong separation of the individual components
- The homogeneously distributed gas clouds interacted significantly

Bullet Cluster, blue: gravitational potential, red: x-ray emitting gas

- The maximum of the gravitational potential is not the maximum of the visible matter density.
- Dark matter!

Conclusion

- Average kinetic energy is equal to 1/2 the average potential energy.
- Frequency of radial pulsations in a gas sphere. (pulsational period)
- The introduction of magnetic fields only serves to lengthen the period of pulsation.
- The addition of rotational energy will tend to reduce it.
- Equations for stability of white dwarfs and neutron stars.
- Temperature of the interior of a star.
- The dark matter hypothesis.

Thank you for your attention

https://www.df.uns.ac.rs/files/200/marina_pavlovic_-_diplomski_rad_(d-).pdf